| Exam Board | Edexcel |
| Module | P2 (Pure Mathematics 2) |
| Year | 2019 |
| Session | June |
| Topic | Binomial Theorem (positive integer n) |
| Type | Simplify to standard form |
4. (a) Find the first four terms, in ascending powers of \(x\), of the binomial expansion of
$$\left( 2 - \frac { 1 } { 4 } x \right) ^ { 6 }$$
(b) Given that \(x\) is small, so terms in \(x ^ { 4 }\) and higher powers of \(x\) may be ignored, show
$$\left( 2 - \frac { 1 } { 4 } x \right) ^ { 6 } + \left( 2 + \frac { 1 } { 4 } x \right) ^ { 6 } = a + b x ^ { 2 }$$
where \(a\) and \(b\) are constants to be found.