- The curve \(C\) has equation \(y = \mathrm { f } ( x ) , \quad x > 0\), where
$$\frac { \mathrm { d } y } { \mathrm {~d} x } = 3 x - \frac { 5 } { \sqrt { } x } - 2$$
Given that the point \(P ( 4,5 )\) lies on \(C\), find
- \(\mathrm { f } ( x )\),
- an equation of the tangent to \(C\) at the point \(P\), giving your answer in the form \(a x + b y + c = 0\), where \(a , b\) and \(c\) are integers.