10. The curve \(C\) has equation \(y = \frac { 1 } { 3 } x ^ { 3 } - 4 x ^ { 2 } + 8 x + 3\).
The point \(P\) has coordinates \(( 3,0 )\).
- Show that \(P\) lies on \(C\).
- Find the equation of the tangent to \(C\) at \(P\), giving your answer in the form \(y = m x + c\), where \(m\) and \(c\) are constants.
Another point \(Q\) also lies on \(C\). The tangent to \(C\) at \(Q\) is parallel to the tangent to \(C\) at \(P\).
- Find the coordinates of \(Q\).