10
\includegraphics[max width=\textwidth, alt={}, center]{e753f588-97bc-4c6a-a82b-7b6a6d0cadc4-4_597_693_274_726}
The diagram shows a cube \(O A B C D E F G\) in which the length of each side is 4 units. The unit vectors \(\mathbf { i } , \mathbf { j }\) and \(\mathbf { k }\) are parallel to \(\overrightarrow { O A } , \overrightarrow { O C }\) and \(\overrightarrow { O D }\) respectively. The mid-points of \(O A\) and \(D G\) are \(P\) and \(Q\) respectively and \(R\) is the centre of the square face \(A B F E\).
- Express each of the vectors \(\overrightarrow { P R }\) and \(\overrightarrow { P Q }\) in terms of \(\mathbf { i } , \mathbf { j }\) and \(\mathbf { k }\).
- Use a scalar product to find angle \(Q P R\).
- Find the perimeter of triangle \(P Q R\), giving your answer correct to 1 decimal place.