- The curve \(C\) has equation
$$y = \frac { x ^ { 3 } } { 4 } - x ^ { 2 } + \frac { 17 } { x } \quad x > 0$$
- Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\), giving your answer in simplest form.
The point \(R \left( 2 , \frac { 13 } { 2 } \right)\) lies on \(C\).
- Find the equation of the tangent to \(C\) at the point \(R\). Write your answer in the form \(a x + b y + c = 0\), where \(a , b\) and \(c\) are integers to be found.