9.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{3cf69966-e825-4ff0-a6e8-c5dfdc92c53f-26_428_1354_251_287}
\captionsetup{labelformat=empty}
\caption{Figure 4}
\end{figure}
Figure 4 shows part of the graph of the curve with equation \(y = \sin x\)
Given that \(\sin \alpha = p\), where \(0 < \alpha < 90 ^ { \circ }\)
- state, in terms of \(p\), the value of
- \(2 \sin \left( 180 ^ { \circ } - \alpha \right)\)
- \(\sin \left( \alpha - 180 ^ { \circ } \right)\)
- \(3 + \sin \left( 180 ^ { \circ } + \alpha \right)\)
A copy of Figure 4, labelled Diagram 1, is shown on page 27.
On Diagram 1,
- sketch the graph of \(y = \sin 2 x\)
- Hence find, in terms of \(\alpha\), the \(x\) coordinates of any points in the interval \(0 < x < 180 ^ { \circ }\) where
$$\sin 2 x = p$$
\includegraphics[max width=\textwidth, alt={}]{3cf69966-e825-4ff0-a6e8-c5dfdc92c53f-27_433_1331_296_310}
\section*{Diagram 1}