9.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{5eee32af-9b0e-428c-bbc6-1feef44e0e1e-24_741_806_255_577}
\captionsetup{labelformat=empty}
\caption{Figure 3}
\end{figure}
Figure 3 shows a plot of the curve with equation \(y = \sin \theta , \quad 0 \leqslant \theta \leqslant 360 ^ { \circ }\)
- State the coordinates of the minimum point on the curve with equation
$$y = 4 \sin \theta , \quad 0 \leqslant \theta \leqslant 360 ^ { \circ }$$
A copy of Figure 3, called Diagram 1, is shown on the next page.
- On Diagram 1, sketch and label the curves
- \(y = 1 + \sin \theta , \quad 0 \leqslant \theta \leqslant 360 ^ { \circ }\)
- \(y = \tan \theta , \quad 0 \leqslant \theta \leqslant 360 ^ { \circ }\)
- Hence find the number of solutions of the equation
- \(\tan \theta = 1 + \sin \theta\) that lie in the region \(0 \leqslant \theta \leqslant 2160 ^ { \circ }\)
- \(\tan \theta = 1 + \sin \theta\) that lie in the region \(0 \leqslant \theta \leqslant 1980 ^ { \circ }\)
\includegraphics[max width=\textwidth, alt={}]{5eee32af-9b0e-428c-bbc6-1feef44e0e1e-25_746_808_577_575}
\section*{Diagram 1}