CAIE Further Paper 4 2020 November — Question 5 5 marks

Exam BoardCAIE
ModuleFurther Paper 4 (Further Paper 4)
Year2020
SessionNovember
Marks5
TopicProbability Generating Functions
TypeDerive standard distribution PGF

5 The random variable \(X\) has the binomial distribution \(\mathrm { B } ( n , p )\).
  1. Write down an expression for \(\mathrm { P } ( \mathrm { X } = \mathrm { r } )\) and hence show that the probability generating function of \(X\) is \(( \mathrm { q } + \mathrm { pt } ) ^ { \mathrm { n } }\), where \(\mathrm { q } = 1 - \mathrm { p }\).
  2. Use the probability generating function of \(X\) to prove that \(\mathrm { E } ( \mathrm { X } ) = \mathrm { np }\) and \(\operatorname { Var } ( \mathrm { X } ) = \mathrm { np } ( 1 - \mathrm { p } )\). [5]