CAIE S2 2016 March — Question 7

Exam BoardCAIE
ModuleS2 (Statistics 2)
Year2016
SessionMarch
TopicContinuous Probability Distributions and Random Variables
TypeSymmetry property of PDF

7

  1. \includegraphics[max width=\textwidth, alt={}, center]{3f1a0c67-03a4-4b4f-99c0-4336ba7d56b0-3_255_643_264_790} The diagram shows the graph of the probability density function, f , of a random variable \(X\), where $$f ( x ) = \begin{cases} \frac { 2 } { 9 } \left( 3 x - x ^ { 2 } \right) & 0 \leqslant x \leqslant 3
    0 & \text { otherwise } \end{cases}$$
    1. State the value of \(\mathrm { E } ( X )\) and find \(\operatorname { Var } ( X )\).
    2. State the value of \(\mathrm { P } ( 1.5 \leqslant X \leqslant 4 )\).
    3. Given that \(\mathrm { P } ( 1 \leqslant X \leqslant 2 ) = \frac { 13 } { 27 }\), find \(\mathrm { P } ( X > 2 )\).
  2. A random variable, \(W\), has probability density function given by $$\mathrm { g } ( w ) = \begin{cases} a w & 0 \leqslant w \leqslant b
    0 & \text { otherwise } \end{cases}$$ where \(a\) and \(b\) are constants. Given that the median of \(W\) is 2 , find \(a\) and \(b\).