3 A curve is such that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = x ^ { 3 } - \frac { 4 } { x ^ { 2 } }\). The point \(P ( 2,9 )\) lies on the curve.
- A point moves on the curve in such a way that the \(x\)-coordinate is decreasing at a constant rate of 0.05 units per second. Find the rate of change of the \(y\)-coordinate when the point is at \(P\). [2]
- Find the equation of the curve.