Two random variables \(X\) and \(Y\) have the independent distributions \(\mathrm { N } ( 7,3 )\) and \(\mathrm { N } ( 6,2 )\) respectively. A random value of each variable is taken.
Find the probability that the two values differ by more than 2 .
Each candidate's overall score in a science test is calculated as follows. The mark for theory is denoted by \(T\), the mark for practical is denoted by \(P\), and the overall score is given by \(T + 1.5 P\). The variables \(T\) and \(P\) are assumed to be independent with distributions \(\mathrm { N } ( 62,158 )\) and \(\mathrm { N } ( 42,108 )\) respectively. You should assume that no continuity corrections are needed when using these distributions.
A pass is awarded to candidates whose overall score is at least 90 .
Find the proportion of candidates who pass.
Comment on the assumption that the variables \(T\) and \(P\) are independent.