7 Machine \(A\) fills bags of fertiliser so that their weights follow a normal distribution with mean 20.05 kg and standard deviation 0.15 kg . Machine \(B\) fills bags of fertiliser so that their weights follow a normal distribution with mean 20.05 kg and standard deviation 0.27 kg .
- Find the probability that the total weight of a random sample of 20 bags filled by machine \(A\) is at least 2 kg more than the total weight of a random sample of 20 bags filled by machine \(B\). [6]
- A random sample of \(n\) bags filled by machine \(A\) is taken. The probability that the sample mean weight of the bags is greater than 20.07 kg is denoted by \(p\). Find the value of \(n\), given that \(p = 0.0250\) correct to 4 decimal places.