CAIE S2 2020 June — Question 4

Exam BoardCAIE
ModuleS2 (Statistics 2)
Year2020
SessionJune
TopicCentral limit theorem

4 The score on one spin of a 5 -sided spinner is denoted by the random variable \(X\) with probability distribution as shown in the table.
\(x\)01234
\(\mathrm { P } ( X = x )\)0.10.20.40.20.1
  1. Show that \(\operatorname { Var } ( X ) = 1.2\).
    The spinner is spun 200 times. The score on each spin is noted and the mean, \(\bar { X }\), of the 200 scores is found.
  2. Given that \(\mathrm { P } ( \bar { X } > a ) = 0.1\), find the value of \(a\).
  3. Explain whether it was necessary to use the Central Limit theorem in your answer to part (b).
  4. Johann has another, similar, spinner. He suspects that it is biased so that the mean score is less than 2 . He spins his spinner 200 times and finds that the mean of the 200 scores is 1.86 . Given that the variance of the score on one spin of this spinner is also 1.2 , test Johann's suspicion at the 5\% significance level.