CAIE P1 2022 June — Question 10

Exam BoardCAIE
ModuleP1 (Pure Mathematics 1)
Year2022
SessionJune
TopicComposite & Inverse Functions

10 Functions \(f\) and \(g\) are defined as follows: $$\begin{array} { l l } \mathrm { f } ( x ) = \frac { 2 x + 1 } { 2 x - 1 } & \text { for } x \neq \frac { 1 } { 2 }
\mathrm {~g} ( x ) = x ^ { 2 } + 4 & \text { for } x \in \mathbb { R } \end{array}$$

  1. \includegraphics[max width=\textwidth, alt={}, center]{bb7595c9-93ae-49e8-9cc5-9ecc802e6060-16_773_1182_555_511} The diagram shows part of the graph of \(y = \mathrm { f } ( x )\).
    State the domain of \(\mathrm { f } ^ { - 1 }\).
  2. Find an expression for \(\mathrm { f } ^ { - 1 } ( x )\).
  3. Find \(\mathrm { gf } ^ { - 1 } ( 3 )\).
  4. Explain why \(\mathrm { g } ^ { - 1 } ( x )\) cannot be found.
  5. Show that \(1 + \frac { 2 } { 2 x - 1 }\) can be expressed as \(\frac { 2 x + 1 } { 2 x - 1 }\). Hence find the area of the triangle enclosed by the tangent to the curve \(y = \mathrm { f } ( x )\) at the point where \(x = 1\) and the \(x\) - and \(y\)-axes.