CAIE P1 2017 June — Question 3

Exam BoardCAIE
ModuleP1 (Pure Mathematics 1)
Year2017
SessionJune
TopicVectors 3D & Lines

3
- 6
p \end{array} \right) \quad \text { and } \quad \overrightarrow { O B } = \left( \begin{array} { r } 2
- 6
- 7 \end{array} \right)$$ and angle \(A O B = 90 ^ { \circ }\).
  1. Find the value of \(p\).
    The point \(C\) is such that \(\overrightarrow { O C } = \frac { 2 } { 3 } \overrightarrow { O A }\).
  2. Find the unit vector in the direction of \(\overrightarrow { B C }\).
    3
  3. Prove the identity \(\frac { 1 + \cos \theta } { \sin \theta } + \frac { \sin \theta } { 1 + \cos \theta } \equiv \frac { 2 } { \sin \theta }\).
  4. Hence solve the equation \(\frac { 1 + \cos \theta } { \sin \theta } + \frac { \sin \theta } { 1 + \cos \theta } = \frac { 3 } { \cos \theta }\) for \(0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ }\).