A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Reciprocal Trig & Identities
Q7
CAIE P1 2016 June — Question 7
Exam Board
CAIE
Module
P1 (Pure Mathematics 1)
Year
2016
Session
June
Topic
Reciprocal Trig & Identities
7
Prove the identity \(\frac { 1 + \cos \theta } { 1 - \cos \theta } - \frac { 1 - \cos \theta } { 1 + \cos \theta } \equiv \frac { 4 } { \sin \theta \tan \theta }\).
Hence solve, for \(0 ^ { \circ } < \theta < 360 ^ { \circ }\), the equation $$\sin \theta \left( \frac { 1 + \cos \theta } { 1 - \cos \theta } - \frac { 1 - \cos \theta } { 1 + \cos \theta } \right) = 3 .$$
This paper
(11 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10
Q11