CAIE S1 2022 June — Question 4

Exam BoardCAIE
ModuleS1 (Statistics 1)
Year2022
SessionJune
TopicDiscrete Probability Distributions
TypeTwo unknowns from sum and expectation

4 Jacob has four coins. One of the coins is biased such that when it is thrown the probability of obtaining a head is \(\frac { 7 } { 10 }\). The other three coins are fair. Jacob throws all four coins once. The number of heads that he obtains is denoted by the random variable \(X\). The probability distribution table for \(X\) is as follows.
\(x\)01234
\(\mathrm { P } ( X = x )\)\(\frac { 3 } { 80 }\)\(a\)\(b\)\(c\)\(\frac { 7 } { 80 }\)
  1. Show that \(a = \frac { 1 } { 5 }\) and find the values of \(b\) and \(c\).
  2. Find \(\mathrm { E } ( X )\).
    Jacob throws all four coins together 10 times.
  3. Find the probability that he obtains exactly one head on fewer than 3 occasions.
  4. Find the probability that Jacob obtains exactly one head for the first time on the 7th or 8th time that he throws the 4 coins.