2 An object is made from two identical uniform rods \(A B\) and \(B C\) each of length 0.6 m and weight 7 N . The rods are rigidly joined to each other at \(B\) and angle \(A B C = 90 ^ { \circ }\).
- Calculate the distance of the centre of mass of the object from \(B\).
The object is freely suspended at \(A\) and a force of magnitude \(F \mathrm {~N}\) is applied to the rod \(B C\) at \(C\). The object is in equilibrium with \(A B\) inclined at \(45 ^ { \circ }\) to the horizontal.
- (a)
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{a093cbad-3ba0-45ce-a617-d4ecc8cb1ec9-2_401_314_799_995}
\captionsetup{labelformat=empty}
\caption{Fig. 1}
\end{figure}
Calculate \(F\) given that the force acts horizontally as shown in Fig. 1.
(b)
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{a093cbad-3ba0-45ce-a617-d4ecc8cb1ec9-2_503_273_1446_1014}
\captionsetup{labelformat=empty}
\caption{Fig. 2}
\end{figure}
Calculate \(F\) given instead that the force acts perpendicular to the rod as shown in Fig. 2.