7 A particle \(P\) of mass \(m \mathrm {~kg}\) moves in a horizontal straight line against a resistive force of magnitude \(\mathrm { mkv } ^ { 2 } \mathrm {~N}\), where \(v \mathrm {~ms} ^ { - 1 }\) is the speed of \(P\) after it has moved a distance \(x \mathrm {~m}\) and \(k\) is a positive constant. The initial speed of \(P\) is \(u \mathrm {~ms} ^ { - 1 }\).
- Show that \(\mathrm { x } = \frac { 1 } { \mathrm { k } } \ln 2\) when \(\mathrm { v } = \frac { 1 } { 2 } \mathrm { u }\).
Beginning at the instant when the speed of \(P\) is \(\frac { 1 } { 2 } u\), an additional force acts on \(P\). This force has magnitude \(\frac { 5 \mathrm {~m} } { \mathrm { v } } \mathrm { N }\) and acts in the direction of increasing \(x\). - Show that when the speed of \(P\) has increased again to \(u \mathrm {~ms} ^ { - 1 }\), the total distance travelled by \(P\) is given by an expression of the form
$$\frac { 1 } { 3 k } \ln \left( \frac { A - k u ^ { 3 } } { B - k u ^ { 3 } } \right) ,$$
stating the values of the constants \(A\) and \(B\).
If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.