2 A particle \(P\) of mass \(m \mathrm {~kg}\) moves along a horizontal straight line with acceleration \(a \mathrm {~ms} ^ { - 2 }\) given by
$$a = \frac { v \left( 1 - 2 t ^ { 2 } \right) } { t }$$
where \(v \mathrm {~ms} ^ { - 1 }\) is the velocity of \(P\) at time \(t \mathrm {~s}\).
- Find an expression for \(v\) in terms of \(t\) and an arbitrary constant.
- Given that \(a = 5\) when \(t = 1\), find an expression, in terms of \(m\) and \(t\), for the horizontal force acting on \(P\) at time \(t\).