7 A particle of mass 0.25 kg moves in a straight line on a smooth horizontal surface. A variable resisting force acts on the particle. At time \(t \mathrm {~s}\) the displacement of the particle from a point on the line is \(x \mathrm {~m}\), and its velocity is \(( 8 - 2 x ) \mathrm { m } \mathrm { s } ^ { - 1 }\). It is given that \(x = 0\) when \(t = 0\).
- Find the acceleration of the particle in terms of \(x\), and hence find the magnitude of the resisting force when \(x = 1\).
- Find an expression for \(x\) in terms of \(t\).
- Show that the particle is always less than 4 m from its initial position.
\footnotetext{Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.
University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.
}