4 A particle \(P\) of mass 0.5 kg is attached to one end of a light elastic string of natural length 0.8 m and modulus of elasticity 16 N . The other end of the string is attached to a fixed point \(O\). The particle \(P\) is released from rest at the point 0.8 m vertically below \(O\). When the extension of the string is \(x \mathrm {~m}\), the downwards velocity of \(P\) is \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and a force of magnitude \(25 x ^ { 2 } \mathrm {~N}\) opposes the motion of \(P\).
- Show that, when \(P\) is moving downwards, \(v \frac { \mathrm {~d} v } { \mathrm {~d} x } = 10 - 40 x - 50 x ^ { 2 }\).
- For the instant when \(P\) has its greatest downwards speed, find the kinetic energy of \(P\) and the elastic potential energy stored in the string.