7 A particle \(P\) of mass 0.5 kg is attached to a fixed point \(O\) by a light elastic string of natural length 1 m and modulus of elasticity 16 N . The particle \(P\) is projected vertically upwards from \(O\) with speed \(6 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). A resisting force of magnitude \(0.1 x ^ { 2 } \mathrm {~N}\) acts on \(P\) when \(P\) has displacement \(x \mathrm {~m}\) above \(O\). After projection the upwards velocity of \(P\) is \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
- Show that, before the string becomes taut, \(v \frac { \mathrm {~d} v } { \mathrm {~d} x } = - 10 - 0.2 x ^ { 2 }\).
- Find the velocity of \(P\) at the instant the string becomes taut.
- Find an expression for the acceleration of \(P\) while it is moving upwards after the string becomes taut.
- Verify that \(P\) comes to instantaneous rest before the extension of the string is 0.5 m .
If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.