7 Particles \(P\) and \(Q\), of masses 0.8 kg and 0.5 kg respectively, are attached to the ends of a light inextensible string which passes through a small hole in a smooth horizontal table of negligible thickness. \(P\) moves with constant angular speed \(6.25 \mathrm { rad } \mathrm { s } ^ { - 1 }\) in a circular path on the surface of the table.
- It is given that \(Q\) is stationary and that the part of string attached to \(Q\) is vertical. Calculate the radius of the path of \(P\), and find the speed of \(P\).
- It is given instead that the part of string attached to \(Q\) is inclined at \(60 ^ { \circ }\) to the vertical, and that \(Q\) moves in a horizontal circular path below the table, also with constant angular speed \(6.25 \mathrm { rad } \mathrm { s } ^ { - 1 }\). Calculate the total length of the string.
[0pt]
[6]