A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Reciprocal Trig & Identities
Q9
CAIE P1 2014 June — Question 9
Exam Board
CAIE
Module
P1 (Pure Mathematics 1)
Year
2014
Session
June
Topic
Reciprocal Trig & Identities
9
Prove the identity \(\frac { \sin \theta } { 1 - \cos \theta } - \frac { 1 } { \sin \theta } \equiv \frac { 1 } { \tan \theta }\).
Hence solve the equation \(\frac { \sin \theta } { 1 - \cos \theta } - \frac { 1 } { \sin \theta } = 4 \tan \theta\) for \(0 ^ { \circ } < \theta < 180 ^ { \circ }\).
This paper
(12 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10
Q11
Q12