6
\includegraphics[max width=\textwidth, alt={}, center]{6d3892e0-8c88-44ec-940f-c526d71a7fc6-3_720_723_1165_712}
The diagram shows the cross-section \(O A B C D E\) through the centre of mass of a uniform prism. The interior angles of the cross-section at \(O , A , C , D\) and \(E\) are all right angles. \(O A = 0.4 \mathrm {~m} , A B = 0.5 \mathrm {~m}\) and \(B C = C D = 1 \mathrm {~m}\).
- Calculate the distance of the centre of mass of the prism from \(O E\).
The weight of the prism is 120 N . A force of magnitude \(F \mathrm {~N}\) acting along \(D E\) holds the prism in equilibrium when \(O A\) rests on a rough horizontal surface.
- Find the set of possible values of \(F\).