3 A lorry of mass 24000 kg is travelling up a hill which is inclined at \(3 ^ { \circ }\) to the horizontal. The power developed by the lorry's engine is constant, and there is a constant resistance to motion of 3200 N .
- When the speed of the lorry is \(25 \mathrm {~m} \mathrm {~s} ^ { - 1 }\), its acceleration is \(0.2 \mathrm {~m} \mathrm {~s} ^ { - 2 }\). Find the power developed by the lorry's engine.
- Find the steady speed at which the lorry moves up the hill if the power is 500 kW and the resistance remains 3200 N .
\includegraphics[max width=\textwidth, alt={}, center]{75c345bb-7cbd-4b2a-b3a0-0086b80b36c1-05_499_784_258_685}
Blocks \(P\) and \(Q\), of mass \(m \mathrm {~kg}\) and 5 kg respectively, are attached to the ends of a light inextensible string. The string passes over a small smooth pulley which is fixed at the top of a rough plane inclined at \(35 ^ { \circ }\) to the horizontal. Block \(P\) is at rest on the plane and block \(Q\) hangs vertically below the pulley (see diagram). The coefficient of friction between block \(P\) and the plane is 0.2 . Find the set of values of \(m\) for which the two blocks remain at rest.
\includegraphics[max width=\textwidth, alt={}, center]{75c345bb-7cbd-4b2a-b3a0-0086b80b36c1-06_351_1038_255_557}
A small bead \(Q\) can move freely along a smooth horizontal straight wire \(A B\) of length 3 m . Three horizontal forces of magnitudes \(F \mathrm {~N} , 10 \mathrm {~N}\) and 20 N act on the bead in the directions shown in the diagram. The magnitude of the resultant of the three forces is \(R \mathrm {~N}\) in the direction shown in the diagram.