A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Reciprocal Trig & Identities
Q5
CAIE P1 2011 June — Question 5
Exam Board
CAIE
Module
P1 (Pure Mathematics 1)
Year
2011
Session
June
Topic
Reciprocal Trig & Identities
5
Prove the identity \(\frac { \cos \theta } { \tan \theta ( 1 - \sin \theta ) } \equiv 1 + \frac { 1 } { \sin \theta }\).
Hence solve the equation \(\frac { \cos \theta } { \tan \theta ( 1 - \sin \theta ) } = 4\), for \(0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ }\).
This paper
(10 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q10
Q11