CAIE Further Paper 4 2024 June — Question 4

Exam BoardCAIE
ModuleFurther Paper 4 (Further Paper 4)
Year2024
SessionJune
PaperDownload PDF ↗
Mark schemeDownload PDF ↗
TopicProbability Generating Functions

4 The random variable \(Y\) is the sum of two independent observations of the random variable \(X\). The probability generating function \(\mathrm { G } _ { Y } ( \mathrm { t } )\) of \(Y\) is given by $$G _ { Y } ( t ) = \frac { t ^ { 2 } } { ( 4 - 3 t ) ^ { 4 } }$$
  1. Find \(\mathrm { E } ( \mathrm { Y } )\).
  2. Write down an expression for the probability generating function of \(X\).
  3. Find \(\mathrm { P } ( X = 4 )\).

4 The random variable $Y$ is the sum of two independent observations of the random variable $X$. The probability generating function $\mathrm { G } _ { Y } ( \mathrm { t } )$ of $Y$ is given by

$$G _ { Y } ( t ) = \frac { t ^ { 2 } } { ( 4 - 3 t ) ^ { 4 } }$$

(a) Find $\mathrm { E } ( \mathrm { Y } )$.\\

(b) Write down an expression for the probability generating function of $X$.\\

(c) Find $\mathrm { P } ( X = 4 )$.\\

\hfill \mbox{\textit{CAIE Further Paper 4 2024 Q4}}