CAIE Further Paper 4 2023 June — Question 6

Exam BoardCAIE
ModuleFurther Paper 4 (Further Paper 4)
Year2023
SessionJune
PaperDownload PDF ↗
Mark schemeDownload PDF ↗
TopicContinuous Probability Distributions and Random Variables

6 The continuous random variable \(X\) has probability density function f given by $$f ( x ) = \begin{cases} \frac { 3 } { 28 } \left( e ^ { \frac { 1 } { 2 } x } + 4 e ^ { - \frac { 1 } { 2 } x } \right) & 0 \leqslant x \leqslant 2 \ln 3 \\ 0 & \text { otherwise } \end{cases}$$
  1. Find the cumulative distribution function of \(X\).
    The random variable \(Y\) is defined by \(Y = e ^ { \frac { 1 } { 2 } ( X ) }\).
  2. Find the probability density function of \(Y\).
  3. Find the 30th percentile of \(Y\).
  4. Find \(\mathrm { E } \left( Y ^ { 4 } \right)\).
    If you use the following page to complete the answer to any question, the question number must be clearly shown.

6 The continuous random variable $X$ has probability density function f given by

$$f ( x ) = \begin{cases} \frac { 3 } { 28 } \left( e ^ { \frac { 1 } { 2 } x } + 4 e ^ { - \frac { 1 } { 2 } x } \right) & 0 \leqslant x \leqslant 2 \ln 3 \\ 0 & \text { otherwise } \end{cases}$$

(a) Find the cumulative distribution function of $X$.\\

The random variable $Y$ is defined by $Y = e ^ { \frac { 1 } { 2 } ( X ) }$.\\
(b) Find the probability density function of $Y$.\\

(c) Find the 30th percentile of $Y$.\\

(d) Find $\mathrm { E } \left( Y ^ { 4 } \right)$.\\

If you use the following page to complete the answer to any question, the question number must be clearly shown.\\

\hfill \mbox{\textit{CAIE Further Paper 4 2023 Q6}}