| Exam Board | CAIE |
|---|---|
| Module | Further Paper 4 (Further Paper 4) |
| Year | 2022 |
| Session | June |
| Paper | Download PDF ↗ |
| Mark scheme | Download PDF ↗ |
| Topic | Continuous Probability Distributions and Random Variables |
3 The continuous random variable $X$ has probability density function f given by
$$f ( x ) = \begin{cases} k x ( 4 - x ) & 0 \leqslant x < 2 \\ k ( 6 - x ) & 2 \leqslant x \leqslant 6 \\ 0 & \text { otherwise } \end{cases}$$
where $k$ is a constant.\\
(a) Show that $k = \frac { 3 } { 40 }$.\\
(b) Given that $\mathrm { E } ( X ) = 2.5$, find $\operatorname { Var } ( X )$.\\
(c) Find the median value of $X$.\\
\hfill \mbox{\textit{CAIE Further Paper 4 2022 Q3}}