CAIE Further Paper 4 2022 June — Question 3

Exam BoardCAIE
ModuleFurther Paper 4 (Further Paper 4)
Year2022
SessionJune
PaperDownload PDF ↗
Mark schemeDownload PDF ↗
TopicContinuous Probability Distributions and Random Variables

3 The continuous random variable \(X\) has probability density function f given by $$f ( x ) = \begin{cases} k x ( 4 - x ) & 0 \leqslant x < 2 \\ k ( 6 - x ) & 2 \leqslant x \leqslant 6 \\ 0 & \text { otherwise } \end{cases}$$ where \(k\) is a constant.
  1. Show that \(k = \frac { 3 } { 40 }\).
  2. Given that \(\mathrm { E } ( X ) = 2.5\), find \(\operatorname { Var } ( X )\).
  3. Find the median value of \(X\).

3 The continuous random variable $X$ has probability density function f given by

$$f ( x ) = \begin{cases} k x ( 4 - x ) & 0 \leqslant x < 2 \\ k ( 6 - x ) & 2 \leqslant x \leqslant 6 \\ 0 & \text { otherwise } \end{cases}$$

where $k$ is a constant.\\
(a) Show that $k = \frac { 3 } { 40 }$.\\

(b) Given that $\mathrm { E } ( X ) = 2.5$, find $\operatorname { Var } ( X )$.\\

(c) Find the median value of $X$.\\

\hfill \mbox{\textit{CAIE Further Paper 4 2022 Q3}}