| Exam Board | CAIE |
|---|---|
| Module | Further Paper 4 (Further Paper 4) |
| Year | 2020 |
| Session | June |
| Paper | Download PDF ↗ |
| Mark scheme | Download PDF ↗ |
| Topic | Continuous Probability Distributions and Random Variables |
3 The continuous random variable $X$ has probability density function f given by
$$f ( x ) = \begin{cases} \frac { 3 } { 16 } ( 2 - \sqrt { x } ) & 0 \leqslant x < 1 \\ \frac { 3 } { 16 \sqrt { x } } & 1 \leqslant x \leqslant 9 \\ 0 & \text { otherwise } \end{cases}$$
(a) Find $\mathrm { E } ( X )$.\\
The random variable $Y$ is such that $Y = \sqrt { X }$.\\
(b) Find the probability density function of $Y$.\\
\hfill \mbox{\textit{CAIE Further Paper 4 2020 Q3}}