CAIE Further Paper 4 2020 June — Question 3

Exam BoardCAIE
ModuleFurther Paper 4 (Further Paper 4)
Year2020
SessionJune
PaperDownload PDF ↗
Mark schemeDownload PDF ↗
TopicContinuous Probability Distributions and Random Variables

3 The continuous random variable \(X\) has probability density function f given by $$f ( x ) = \begin{cases} \frac { 3 } { 16 } ( 2 - \sqrt { x } ) & 0 \leqslant x < 1 \\ \frac { 3 } { 16 \sqrt { x } } & 1 \leqslant x \leqslant 9 \\ 0 & \text { otherwise } \end{cases}$$
  1. Find \(\mathrm { E } ( X )\).
    The random variable \(Y\) is such that \(Y = \sqrt { X }\).
  2. Find the probability density function of \(Y\).

3 The continuous random variable $X$ has probability density function f given by

$$f ( x ) = \begin{cases} \frac { 3 } { 16 } ( 2 - \sqrt { x } ) & 0 \leqslant x < 1 \\ \frac { 3 } { 16 \sqrt { x } } & 1 \leqslant x \leqslant 9 \\ 0 & \text { otherwise } \end{cases}$$

(a) Find $\mathrm { E } ( X )$.\\

The random variable $Y$ is such that $Y = \sqrt { X }$.\\
(b) Find the probability density function of $Y$.\\

\hfill \mbox{\textit{CAIE Further Paper 4 2020 Q3}}