| Exam Board | CAIE |
|---|---|
| Module | S2 (Statistics 2) |
| Year | 2018 |
| Session | November |
| Paper | Download PDF ↗ |
| Mark scheme | Download PDF ↗ |
| Topic | Continuous Probability Distributions and Random Variables |
6 The random variable $X$ has probability density function given by
$$f ( x ) = \begin{cases} k x ^ { - 1 } & 2 \leqslant x \leqslant 6 \\ 0 & \text { otherwise } \end{cases}$$
where $k$ is a constant.\\
(i) Show that $k = \frac { 1 } { \ln 3 }$.\\
(ii) Show that $\mathrm { E } ( X ) = 3.64$, correct to 3 significant figures.\\
(iii) Given that the median of $X$ is $m$, find $\mathrm { P } ( m < X < \mathrm { E } ( X ) )$.\\
\hfill \mbox{\textit{CAIE S2 2018 Q6}}