CAIE FP1 2016 November — Question 4

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2016
SessionNovember
PaperDownload PDF ↗
Mark schemeDownload PDF ↗
TopicBinomial Theorem (positive integer n)

4 Using factorials, show that \(\binom { n } { r - 1 } + \binom { n } { r } = \binom { n + 1 } { r }\). Hence prove by mathematical induction that $$( a + x ) ^ { n } = \binom { n } { 0 } a ^ { n } + \binom { n } { 1 } a ^ { n - 1 } x + \ldots + \binom { n } { r } a ^ { n - r } x ^ { r } + \ldots + \binom { n } { n } x ^ { n }$$ for every positive integer \(n\).

4 Using factorials, show that $\binom { n } { r - 1 } + \binom { n } { r } = \binom { n + 1 } { r }$.

Hence prove by mathematical induction that

$$( a + x ) ^ { n } = \binom { n } { 0 } a ^ { n } + \binom { n } { 1 } a ^ { n - 1 } x + \ldots + \binom { n } { r } a ^ { n - r } x ^ { r } + \ldots + \binom { n } { n } x ^ { n }$$

for every positive integer $n$.

\hfill \mbox{\textit{CAIE FP1 2016 Q4}}