CAIE Further Paper 1 2024 June — Question 5

Exam BoardCAIE
ModuleFurther Paper 1 (Further Paper 1)
Year2024
SessionJune
PaperDownload PDF ↗
Mark schemeDownload PDF ↗
TopicVectors: Lines & Planes

5 The points \(A , B , C\) have position vectors $$2 \mathbf { i } + 2 \mathbf { j } + 4 \mathbf { k } , \quad 2 \mathbf { i } + 4 \mathbf { j } - \mathbf { k } , \quad - 3 \mathbf { i } - 3 \mathbf { j } + 4 \mathbf { k }$$ respectively, relative to the origin \(O\).
  1. Find the equation of the plane \(A B C\), giving your answer in the form \(a x + b y + c z = d\).
    The point \(D\) has position vector \(2 \mathbf { i } + \mathbf { j } + 3 \mathbf { k }\).
  2. Find the perpendicular distance from \(D\) to the plane \(A B C\).
  3. Find the shortest distance between the lines \(A B\) and \(C D\).

5 The points $A , B , C$ have position vectors

$$2 \mathbf { i } + 2 \mathbf { j } + 4 \mathbf { k } , \quad 2 \mathbf { i } + 4 \mathbf { j } - \mathbf { k } , \quad - 3 \mathbf { i } - 3 \mathbf { j } + 4 \mathbf { k }$$

respectively, relative to the origin $O$.\\
(a) Find the equation of the plane $A B C$, giving your answer in the form $a x + b y + c z = d$.\\

The point $D$ has position vector $2 \mathbf { i } + \mathbf { j } + 3 \mathbf { k }$.\\
(b) Find the perpendicular distance from $D$ to the plane $A B C$.\\

(c) Find the shortest distance between the lines $A B$ and $C D$.\\

\hfill \mbox{\textit{CAIE Further Paper 1 2024 Q5}}