OCR Further Pure Core 2 2021 June — Question 2

Exam BoardOCR
ModuleFurther Pure Core 2 (Further Pure Core 2)
Year2021
SessionJune
TopicVectors: Cross Product & Distances

2
  1. Find the shortest distance between the point \(( - 6,4 )\) and the line \(y = - 0.75 x + 7\). Two lines, \(l _ { 1 }\) and \(l _ { 2 }\), are given by
    \(l _ { 1 } : \mathbf { r } = \left( \begin{array} { c } 4
    3
    - 2 \end{array} \right) + \lambda \left( \begin{array} { c } 2
    1
    - 4 \end{array} \right)\) and \(l _ { 2 } : \mathbf { r } = \left( \begin{array} { c } 11
    - 1
    5 \end{array} \right) + \mu \left( \begin{array} { c } 3
    - 1
    1 \end{array} \right)\).
  2. Find the shortest distance between \(l _ { 1 }\) and \(l _ { 2 }\).
  3. Hence determine the geometrical arrangement of \(l _ { 1 }\) and \(l _ { 2 }\). Three matrices, \(\mathbf { A } , \mathbf { B }\) and \(\mathbf { C }\), are given by \(\mathbf { A } = \left( \begin{array} { c c } 1 & 2
    a & - 1 \end{array} \right) , \mathbf { B } = \left( \begin{array} { c c } 2 & - 1
    4 & 1 \end{array} \right)\) and \(\mathbf { C } = \left( \begin{array} { c c } 5 & 0
    - 2 & 2 \end{array} \right)\) where \(a\) is a
    constant.
  4. Using \(\mathbf { A } , \mathbf { B }\) and \(\mathbf { C }\) in that order demonstrate explicitly the associativity property of matrix multiplication.
  5. Use \(\mathbf { A }\) and \(\mathbf { C }\) to disprove by counterexample the proposition 'Matrix multiplication is commutative'. For a certain value of \(a , \mathbf { A } \binom { x } { y } = 3 \binom { x } { y }\).
  6. Find
    • \(y\) in terms of \(x\),
    • the value of \(a\).
      \includegraphics[max width=\textwidth, alt={}, center]{570dba92-2c81-43e8-a0a8-741c40718626-3_586_1024_187_404}
    The figure shows part of the graph of \(y = ( x - 3 ) \sqrt { \ln x }\). The portion of the graph below the \(x\)-axis is rotated by \(2 \pi\) radians around the \(x\)-axis to form a solid of revolution, \(S\). Determine the exact volume of \(S\).
This paper (3 questions)
View full paper