5 The function \(\operatorname { sech } x\) is defined by \(\operatorname { sech } x = \frac { 1 } { \cosh x }\).
- Show that \(\operatorname { sech } x = \frac { 2 \mathrm { e } ^ { x } } { \mathrm { e } ^ { 2 x } + 1 }\).
- Using a suitable substitution, find \(\int \operatorname { sech } x \mathrm {~d} x\).