SPS SPS SM Mechanics 2021 January — Question 6

Exam BoardSPS
ModuleSPS SM Mechanics (SPS SM Mechanics)
Year2021
SessionJanuary
TopicDiscrete Probability Distributions
TypeProbabilities in table form with k

6. The discrete random variable \(D\) has the following probability distribution
\(d\)1020304050
\(\mathrm { P } ( D = d )\)\(\frac { k } { 10 }\)\(\frac { k } { 20 }\)\(\frac { k } { 30 }\)\(\frac { k } { 40 }\)\(\frac { k } { 50 }\)
where \(k\) is a constant.
  1. Show that the value of \(k\) is \(\frac { 600 } { 137 }\) The random variables \(D _ { 1 }\) and \(D _ { 2 }\) are independent and each have the same distribution as \(D\).
  2. Find P \(\left( D _ { 1 } + D _ { 2 } = 80 \right)\) Give your answer to 3 significant figures. A single observation of \(D\) is made.
    The value obtained, \(d\), is the common difference of an arithmetic sequence.
    The first 4 terms of this arithmetic sequence are the angles, measured in degrees, of quadrilateral \(Q\)
  3. Find the exact probability that the smallest angle of \(Q\) is more than \(50 ^ { \circ }\)