| Exam Board | WJEC |
| Module | Unit 3 (Unit 3) |
| Year | 2019 |
| Session | June |
| Topic | Product & Quotient Rules |
\(\mathbf { 1 }\) & \(\mathbf { 0 }\)
\hline
\end{tabular}
\end{center} a) Differentiate each of the following functions with respect to \(x\).
i) \(x ^ { 5 } \ln x\)
ii) \(\frac { \mathrm { e } ^ { 3 x } } { x ^ { 3 } - 1 }\)
iii) \(( \tan x + 7 x ) ^ { \frac { 1 } { 2 } }\)
b) A function is defined implicitly by
$$3 y + 4 x y ^ { 2 } - 5 x ^ { 3 } = 8$$
Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\) and \(y\).
□
1
The function \(f ( x )\) is defined by
$$f ( x ) = \frac { \sqrt { x ^ { 2 } - 1 } } { x }$$
with domain \(x \geqslant 1\).
a) Find an expression for \(f ^ { - 1 } ( x )\). State the domain for \(f ^ { - 1 }\) and sketch both \(f ( x )\) and \(f ^ { - 1 } ( x )\) on the same diagram.
b) Explain why the function \(f f ( x )\) cannot be formed.
□
1
A chord \(A B\) subtends an angle \(\theta\) radians at the centre of a circle. The chord divides the circle into two segments whose areas are in the ratio \(1 : 2\).
\includegraphics[max width=\textwidth, alt={}, center]{966abb82-ade0-4ca8-87a4-26e806d5add7-5_572_576_1197_749}
a) Show that \(\sin \theta = \theta - \frac { 2 \pi } { 3 }\).
b) i) Show that \(\theta\) lies between \(2 \cdot 6\) and \(2 \cdot 7\).
ii) Starting with \(\theta _ { 0 } = 2 \cdot 6\), use the Newton-Raphson Method to find the value of \(\theta\) correct to three decimal places.