5 Matrices \(\mathbf { A }\) and \(\mathbf { B }\) are given by \(\mathbf { A } = \left( \begin{array} { r l } - 1 & 0
0 & 1 \end{array} \right)\) and \(\mathbf { B } = \left( \begin{array} { c c } \frac { 5 } { 13 } & - \frac { 12 } { 13 }
\frac { 12 } { 13 } & \frac { 5 } { 13 } \end{array} \right)\).
- Use \(\mathbf { A }\) and \(\mathbf { B }\) to disprove the proposition: "Matrix multiplication is commutative".
Matrix \(\mathbf { B }\) represents the transformation \(\mathrm { T } _ { \mathrm { B } }\).
- Describe the transformation \(\mathrm { T } _ { \mathrm { B } }\).
- By considering the inverse transformation of \(\mathrm { T } _ { \mathrm { B } }\), determine \(\mathbf { B } ^ { - 1 }\).
Matrix \(\mathbf { C }\) is given by \(\mathbf { C } = \left( \begin{array} { r r } 1 & 0
0 & - 3 \end{array} \right)\) and represents the transformation \(\mathrm { T } _ { \mathrm { C } }\).
The transformation \(\mathrm { T } _ { \mathrm { BC } }\) is transformation \(\mathrm { T } _ { \mathrm { C } }\) followed by transformation \(\mathrm { T } _ { \mathrm { B } }\).
An object shape of area 5 is transformed by \(\mathrm { T } _ { \mathrm { BC } }\) to an image shape \(N\). - Determine the area of \(N\).