AQA Further Paper 2 2023 June — Question 9

Exam BoardAQA
ModuleFurther Paper 2 (Further Paper 2)
Year2023
SessionJune
TopicComplex Numbers Arithmetic
TypeReal and imaginary part expressions

9 The complex number \(z\) is such that $$z = \frac { 1 + \mathrm { i } } { 1 - k \mathrm { i } }$$ where \(k\) is a real number. 9
  1. Find the real part of \(z\) and the imaginary part of \(z\), giving your answers in terms of \(k\)
    9
  2. In the case where \(k = \sqrt { 3 }\), use part (a) to show that $$\cos \frac { 7 \pi } { 12 } = \frac { \sqrt { 2 } - \sqrt { 6 } } { 4 }$$ \(\_\_\_\_\) The region \(R\) on an Argand diagram satisfies both \(| z + 2 \mathrm { i } | \leq 3\) and \(- \frac { \pi } { 6 } \leq \arg ( z ) \leq \frac { \pi } { 2 }\)