AQA Further AS Paper 1 Specimen — Question 10 8 marks

Exam BoardAQA
ModuleFurther AS Paper 1 (Further AS Paper 1)
SessionSpecimen
Marks8
TopicProof by induction

10
  1. Prove that $$6 + 3 \sum _ { r = 1 } ^ { n } ( r + 1 ) ( r + 2 ) = ( n + 1 ) ( n + 2 ) ( n + 3 )$$ [6 marks]
    10
  2. Alex substituted a few values of \(n\) into the expression \(( n + 1 ) ( n + 2 ) ( n + 3 )\) and made the statement:
    "For all positive integers n, $$6 + 3 \sum _ { r = 1 } ^ { n } ( r + 1 ) ( r + 2 )$$ is divisible by \(12 . "\) Disprove Alex's statement.
    [0pt] [2 marks]