AQA Further AS Paper 1 2019 June — Question 8 2 marks

Exam BoardAQA
ModuleFurther AS Paper 1 (Further AS Paper 1)
Year2019
SessionJune
Marks2
TopicComplex Numbers Argand & Loci

8 Given that \(z _ { 1 } = 2 \left( \cos \frac { \pi } { 6 } + i \sin \frac { \pi } { 6 } \right)\) and \(z _ { 2 } = 2 \left( \cos \frac { 3 \pi } { 4 } + i \sin \frac { 3 \pi } { 4 } \right)\)
8
  1. Find the value of \(\left| z _ { 1 } z _ { 2 } \right|\) 8
  2. Find the value of \(\arg \left( \frac { z _ { 1 } } { z _ { 2 } } \right)\) 8
  3. Sketch \(z _ { 1 }\) and \(z _ { 2 }\) on the Argand diagram below, labelling the points as \(P\) and \(Q\) respectively.
    [0pt] [2 marks]
    \includegraphics[max width=\textwidth, alt={}, center]{948391d8-10ad-44ce-b254-7f1aaac5c82c-10_764_869_1546_587} 8
  4. A third complex number \(w\) satisfies both \(| w | = 2\) and \(- \pi < \arg w < 0\) Given that \(w\) is represented on the Argand diagram as the point \(R\), find the angle \(P \widehat { R } Q\). Fully justify your answer.