AQA AS Paper 2 2019 June — Question 10

Exam BoardAQA
ModuleAS Paper 2 (AS Paper 2)
Year2019
SessionJune
TopicExponential Functions

10 As part of an experiment, Zena puts a bucket of hot water outside on a day when the outside temperature is \(0 ^ { \circ } \mathrm { C }\). She measures the temperature of the water after 10 minutes and after 20 minutes. Her results are shown below.
Time (minutes)1020
Temperature (degrees Celsius)3012
Zena models the relationship between \(\theta\), the temperature of the water in \({ } ^ { \circ } \mathrm { C }\), and \(t\), the time in minutes, by $$\theta = A \times 10 ^ { - k t }$$ where \(A\) and \(k\) are constants. 10
  1. Using \(t = 0\), explain how the value of \(A\) relates to the experiment. 10
  2. Show that $$\log _ { 10 } \theta = \log _ { 10 } A - k t$$ 10
  3. Using Zena's results, calculate the values of \(A\) and \(k\).
    10
  4. Zena states that the temperature of the water will be less than \(1 ^ { \circ } \mathrm { C }\) after 45 minutes. Determine whether the model supports this statement.
    10
  5. Explain why Zena's model is unlikely to accurately give the value of \(\theta\) after 45 minutes.