AQA AS Paper 1 2019 June — Question 6

Exam BoardAQA
ModuleAS Paper 1 (AS Paper 1)
Year2019
SessionJune
TopicBinomial Theorem (positive integer n)
TypeSubstitution into binomial expansion

6
    1. Show that \(\cos \theta = \frac { 1 } { 2 }\) is one solution of the equation $$6 \sin ^ { 2 } \theta + 5 \cos \theta = 7$$ 6
  1. (ii) Find all the values of \(\theta\) that solve the equation $$6 \sin ^ { 2 } \theta + 5 \cos \theta = 7$$ for \(0 ^ { \circ } \leq \theta \leq 360 ^ { \circ }\)
    Give your answers to the nearest degree.
    6
  2. Hence, find all the solutions of the equation $$6 \sin ^ { 2 } 2 \theta + 5 \cos 2 \theta = 7$$ for \(0 ^ { \circ } \leq \theta \leq 360 ^ { \circ }\)
    Give your answers to the nearest degree.