6 A smooth sphere \(A\) of mass \(m\) is moving with speed \(5 u\) in a straight line on a smooth horizontal table. The sphere \(A\) collides directly with a smooth sphere \(B\) of mass \(7 m\), having the same radius as \(A\) and moving with speed \(u\) in the same direction as \(A\). The coefficient of restitution between \(A\) and \(B\) is \(e\).
\includegraphics[max width=\textwidth, alt={}, center]{719b82f7-2ab5-48db-9b2a-98284096a78a-5_287_880_529_571}
- Show that the speed of \(B\) after the collision is \(\frac { u } { 2 } ( e + 3 )\).
- Given that the direction of motion of \(A\) is reversed by the collision, show that \(e > \frac { 3 } { 7 }\).
- Subsequently, \(B\) hits a wall fixed at right angles to the direction of motion of \(A\) and \(B\). The coefficient of restitution between \(B\) and the wall is \(\frac { 1 } { 2 }\). Given that after \(B\) rebounds from the wall both spheres move in the same direction and collide again, show also that \(e < \frac { 9 } { 13 }\).
(4 marks)