AQA S1 2005 June — Question 4

Exam BoardAQA
ModuleS1 (Statistics 1)
Year2005
SessionJune
TopicLinear regression
TypeCalculate y on x from raw data table

4 The time taken for a fax machine to scan an A4 sheet of paper is dependent, in part, on the number of lines of print on the sheet. The table below shows, for each of a random sample of 8 sheets of A4 paper, the number, \(x\), of lines of print and the scanning time, \(y\) seconds, taken by the fax machine.
Sheet\(\mathbf { 1 }\)\(\mathbf { 2 }\)\(\mathbf { 3 }\)\(\mathbf { 4 }\)\(\mathbf { 5 }\)\(\mathbf { 6 }\)\(\mathbf { 7 }\)\(\mathbf { 8 }\)
\(\boldsymbol { x }\)1016232731353844
\(\boldsymbol { y }\)2.43.53.24.14.15.64.65.3
  1. Calculate the equation of the least squares regression line of \(y\) on \(x\).
  2. The following table lists some of the residuals for the regression line.
    Sheet\(\mathbf { 1 }\)\(\mathbf { 2 }\)\(\mathbf { 3 }\)\(\mathbf { 4 }\)\(\mathbf { 5 }\)\(\mathbf { 6 }\)\(\mathbf { 7 }\)\(\mathbf { 8 }\)
    Residual- 0.1740.4180.085- 0.2540.906- 0.157
    1. Calculate the values of the residuals for sheets 3 and 7 .
    2. Hence explain what can be deduced about the regression line.
  3. The time, \(z\) seconds, to transmit an A4 page after scanning is given by: $$z = 0.80 + 0.05 x$$ Estimate the total time to scan and transmit an A4 page containing:
    1. 15 lines of print;
    2. 75 lines of print. In each case comment on the likely reliability of your estimate.