AQA S1 2010 January — Question 5

Exam BoardAQA
ModuleS1 (Statistics 1)
Year2010
SessionJanuary
TopicCentral limit theorem

5 In a random sample of 12 bags of flour, the weight, in grams, of flour in each bag was recorded as follows.
\(\begin{array} { l l l l l l l l l l l l } 1011 & 995 & 1018 & 1022 & 1014 & 1005 & 1017 & 1015 & 993 & 1018 & 992 & 1020 \end{array}\)
  1. It may be assumed that the weight of flour in a bag is normally distributed with a standard deviation of 10.5 grams.
    1. Construct a \(98 \%\) confidence interval for the mean weight, \(\mu\) grams, of flour in a bag, giving the limits to four significant figures.
    2. State why, in constructing your confidence interval, use of the Central Limit Theorem was not necessary.
    3. If the distribution of the weight of flour in a bag was unknown, indicate a minimum number of weights that you would consider necessary for a confidence interval for \(\mu\) to be valid.
  2. The statement ' 1 kg ' is printed on each bag. Comment on this statement using both the confidence interval that you constructed in part (a)(i) and the weights of the given sample of 12 bags.
  3. Given that \(\mu = 1000\), state the probability that a \(98 \%\) confidence interval for \(\mu\) will not contain 1000.
    (l mark)