AQA C4 2007 June — Question 4

Exam BoardAQA
ModuleC4 (Core Mathematics 4)
Year2007
SessionJune
TopicExponential Functions

4 A biologist is researching the growth of a certain species of hamster. She proposes that the length, \(x \mathrm {~cm}\), of a hamster \(t\) days after its birth is given by $$x = 15 - 12 \mathrm { e } ^ { - \frac { t } { 14 } }$$
  1. Use this model to find:
    1. the length of a hamster when it is born;
    2. the length of a hamster after 14 days, giving your answer to three significant figures.
    1. Show that the time for a hamster to grow to 10 cm in length is given by \(t = 14 \ln \left( \frac { a } { b } \right)\), where \(a\) and \(b\) are integers.
    2. Find this time to the nearest day.
    1. Show that $$\frac { \mathrm { d } x } { \mathrm {~d} t } = \frac { 1 } { 14 } ( 15 - x )$$
    2. Find the rate of growth of the hamster, in cm per day, when its length is 8 cm .
      (1 mark)