AQA C4 2008 January — Question 2

Exam BoardAQA
ModuleC4 (Core Mathematics 4)
Year2008
SessionJanuary
TopicPolynomial Division & Manipulation

2
  1. The polynomial \(\mathrm { f } ( x )\) is defined by \(\mathrm { f } ( x ) = 2 x ^ { 3 } + 3 x ^ { 2 } - 18 x + 8\).
    1. Use the Factor Theorem to show that \(( 2 x - 1 )\) is a factor of \(\mathrm { f } ( x )\).
    2. Write \(\mathrm { f } ( x )\) in the form \(( 2 x - 1 ) \left( x ^ { 2 } + p x + q \right)\), where \(p\) and \(q\) are integers.
    3. Simplify the algebraic fraction \(\frac { 4 x ^ { 2 } + 16 x } { 2 x ^ { 3 } + 3 x ^ { 2 } - 18 x + 8 }\).
  2. Express the algebraic fraction \(\frac { 2 x ^ { 2 } } { ( x + 5 ) ( x - 3 ) }\) in the form \(A + \frac { B + C x } { ( x + 5 ) ( x - 3 ) }\), where \(A , B\) and \(C\) are integers.